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Reichenbachian Common Cause Systems

G. Hofer-Szabó1 and Miklós Rédei2,3

A partition {Ci }i∈I of a Boolean algebra S in a probability measure space (S, p) is
called a Reichenbachian common cause system for the correlated pair A, B of events
in S if any two elements in the partition behave like a Reichenbachian common cause
and its complement, the cardinality of the index set I is called the size of the common
cause system. It is shown that given any correlation in (S, p), and given any finite size
n > 2, the probability space (S, p) can be embedded into a larger probability space in
such a manner that the larger space contains a Reichenbachian common cause system
of size n for the correlation. It also is shown that every totally ordered subset in the
partially ordered set of all partitions of S contains only one Reichenbachian common
cause system. Some open problems concerning Reichenbachian common cause systems
are formulated.
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1. REICHENBACH’S NOTION OF COMMON CAUSE

Let (S, p) be a classical probability space with Boolean algebra S of random
events and probability measure p on S. If the joint probability p(A ∩ B) of A and
B is greater than the product of the single probabilities, i.e. if

p(A ∩ B) > p(A)p(B) (1)

then the events A and B are said to be (positively) correlated and the quantity

Corr(A, B) ≡ p(A ∩ B) − p(A)p(B) (2)

is called the correlation of A and B.
According to Reichenbach (1956), Section 19, a probabilistic common cause

of a correlation such as (1) is an event C (common cause) that satisfies the four
conditions specified in the next definition.
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Definition 1. C is a Reichenbachian common cause of the correlation (1) if the
following (independent) conditions hold

p(A ∩ B|C) = p(A|C)p(B|C) (3)

p(A ∩ B|C⊥) = p(A|C⊥)p(B|C⊥) (4)

p(A|C) > p(A|C⊥) (5)

p(B|C) > p(B|C⊥) (6)

where p(X |Y ) = p(X ∩ Y )/p(Y ) denotes the conditional probability of X on con-
dition Y , C⊥ denotes the complement of C and it is assumed that none of the
probabilities p(X ), (X = A, B, C, C⊥) is equal to zero.

We shall occasionally refer to conditions (3)–(6) as “Reichenbach(ian) condi-
tions.” It is standard terminology to call (3)–(4) “screening-off” conditions and to
say that C (and also C⊥) screens off the correlation between A and B. To exclude
trivial common causes we call a common cause C proper if it differs from both A
and B by more than a measure zero event. In what follows “common cause” will
always mean a proper common cause.

Reichenbach prooves the following proposition.

Proposition 1. If the events A, B, C satisfy the Reichenbachian conditions (3)–
(6) then there is a positive correlation between A and B.

The significance of Proposition 1 is that it shows in what sense a common
cause explains a correlation: from the assumption that A, B, and C satisfy the
Reichenbachian conditions one can derive (equivalently: predict) that A and B are
(positively) correlated—this is an instance of explanation in the sense of Hempel.

Reichenbach’s proof of Proposition 1 is based on the following Lemma,
which, for later purposes, we spell out in a slightly more general form than used
by Reichenbach. Before stating the lemma let us recall that the set of events
{Ci ∈ S|i ∈ I } is a partition of S if ∪i Ci = � (� being the unit in S) and
Ci ∩ C j = ∅ if i �= j .)

Lemma. Let {Ci }i∈I be a partition of S and let A, B ∈ S be arbitrary elements.
If p(A ∩ B|Ci ) = p(A|Ci )p(B|Ci ) for all i ∈ I then we have

p(A ∩ B) − p(A)p(B) = 1

2

∑

i �= j

p(Ci )p(C j )[p(A|Ci ) − p(A|C j )][p(B|Ci )

−p(B|C j )] (7)

Applying Lemma (proof of which is left to the reader) with C1 = C and C2 = C⊥
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one obtains

p(AB) − p(A)p(B) = p(C)p(C⊥)[p(A|C) − p(A|C⊥)][p(B|C)

− p(B|C⊥)] (8)

which is the formula Reichenbach uses in showing Proposition 1.

Equation (8) implies that Corr(A, B) is indeed positive if (5)–(6) hold.
Equation (8) also shows, however, that for Corr(A, B) to be positive (5)–(6) are
sufficient but not necessary: positivity of Corr(A, B) is implied by the positiv-
ity of the right hand side of (8); hence, what is decisive from the point of view
of the explanatory power of the comon cause is that [p(A|C) − p(A|C⊥)] and
[p(B|C) − p(B|C⊥)] have the same sign. It also is clear from (8) that a common
cause can explain negative correlations in just the same way as it can explain
positive ones: if C and C⊥ are such that screening off conditions (3)–(4) hold
and [p(A|C) − p(A|C⊥)] and [p(B|C) − p(B|C⊥)] have opposite signs, then
the right hand side of (8) is negative, hence existence of such a C entails the
negative correlation. All what follows can be modified trivially in order to cover
the case of negative correlation, and all statements presented below remain valid in
the case of negative correlations; however, to simplify notation we restrict ourselves
to positive correlations.

To sum up: the intuitive idea behind explaining by a Reichenbachian common
cause a correlation between A and B in a statistical ensemble is that one should
be able to cut the statistical ensemble by a pair of orthogonal events (C and
C⊥) into two disjoint parts in such a way that (i) the correlation disappears in
both of the resulting subensembles (this is expressed by the two screening off
conditions); and (ii) one of the subensembles should increase the probability of
both A and B (which is the content of the requirement of [p(A|C) − p(A|C⊥)]
and [p(B|C) − p(B|C⊥)] having the same sign).

2. THE NOTION OF A REICHENBACHIAN COMMON CAUSE SYSTEM

It is easy to see that there exist common cause incomplete probability spaces
(S, p), i.e. probability spaces that contain a pair of correlated events without
containing a (proper) common cause of the correlation. Existence of such com-
mon cause incomplete probability spaces can be a threat to what has become
called Reichenbach’s Common Cause Principle (RCCP). Given a correlation Corr
(A, B) > 0, either there is a direct causal influence between A and B that can be
held responsible for the correlation, or there exists a common cause in the sense
of Definition 1. that explains the correlation. So if one sees a correlation between
A and B and has good reasons to think that the correlated events A, B in (S, p)
cannot influence each other causally and yet there exists no common cause in S of
the correlation Corr(A, B), then the suspicion arises that RCCP might not hold.
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Confronted with a common cause incomplete probability space (S, p) in
which a direct causal influence between the correlated events is excluded, one can
have in principle two strategies aiming at saving RCCP: One may try to argue that
S is not “rich enough” to contain a common cause but there might exist a larger
(S ′, p′) that already contains a common cause of the correlation (see Definition 3.3
below for what it means to enlarge (S, p) into (S ′, p′)). It was shown in a previous
paper that this strategy always works in the sense that it is always possible to
enlarge (S, p) in such a way that the enlarged space already contains an event C
that satisfies the Reichenbachian conditions (see Hofer-Szabó et al., 1999, 2000).

Another natural idea is to suspect that the correlation between A and B is not
due to a single factor but may be the cumulative result of a (possibly large) number
of different “partial common causes,” none of which can in and by itself yield a
complete common-cause-type explanation of the correlation, all of which, taken
together, can however account for the entire correlation. Explaining a correlation
by such a system of partial common causes would mean that one can partition
the statistical ensemble into more than two subensembles in such a manner that
(i) the correlation disappears in each of the subensembles, (ii) any pair of such
subensembles behaves like the two subensembles determined by the pair C, C⊥

in the Definition 1. of common cause and (iii) the totality of “partial common
causes” explains the correlation in the sense of entailing it. A mathematically
explicit formulation of this idea is spelled out in the next definition.

Definition 2. Let (S, p) be a probability space and A, B two events in S. The
partition {Ci }i∈I of S is said to be a Reichenbachian common cause system (RCC
system for short) for the pair A, B if the following two conditions are satisfied

p(A ∩ B|Ci ) = p(A|Ci )p(B|Ci ) for all i ∈ I (9)

[p(A|Ci ) − p(A|C j )][p(B|Ci ) − p(B|C j )] > 0 (i �= j) (10)

The above definition is a natural generalization of Reichenbach’s original definition
of common cause to the case when more than one single factor contributes to a
correlation. The cardinality of the index set I (i.e. the number of events in the
partition) is called the size of the RCCS. Since C, C⊥ with a Reichenbachian
common cause C is a RCCS of size 2, we call a RCCS proper if its size is greater
than 2.

The next proposition shows that a Reichenbachian common cause system
also has explanatory power exactly in the sense in which a single common cause
does:

Proposition 2. Let the partition {Ci }i∈I ofS be a Reichenbachian common cause
system for the pair A, B. Then the elements A and B are positiely correlated.
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Proof: The statement in the proposition is an immediate corollary of Lemma
and the definition of the notion of Reichenbachian common cause system. �

3. EXISTENCE AND UNIQUENESS OF REICHENBACHIAN
COMMON CAUSE SYSTEMS

It is not obvious that proper Reichenbachian common cause systems exist. It
is not difficult however to give an example of a probability space (S, p) containing
a pair of correlated events A, B for which there exists no common cause in S but
there exists in S a Reichenbachian common cause system of size 3 (see Hofer-
Szabó and Rédei, in press). This example also shows that the intuition mentioned
in Section 2 is correct: there are cases when an explanation of a correlation with
the help of a single common cause is impossible within the bounds of a given
event structure; yet the event structure is rich enough to contain a proper RCCS
that can explain the correlation. It is not difficult however to find probability
spaces that contain neither a (proper) common cause nor a proper Reichenbachian
common cause system. As it was mentioned in Section 2 it is known that such
common cause incomplete probability spaces can always be extended in such a
way that the extension contains a common cause of the given correlation. More
is true, however: on can show that any probability space can be extended in such
a way that the larger probability space contains a Reichenbachian common cause
system consisting of a large number of events. Before spelling out the precise
proposition let us recall the definition of an extension (S ′, p′) of a probability
space (S, p):

Definition 3. (S ′, p′) is called an extension of (S, p) if there exists an injective
lattice homomorphism (embedding) h:S → S ′ (preserving also the orthocomple-
mentation) such that

p′(h(X )) = p(X ) for all X ∈ S (11)

Proposition 3. Let (S, p) be a classical probability space and n be an arbitrary
finite natural number greater than 2. There exists then an extension (S ′, p′) of
(S, p) such that (S ′, p′) contains a Reichenbachian common cause system of
size n.

(See Hofer-Szabó and Rédei (in press) for the long and tedious proof of this
proposition.)

Proposition 3 shows that RCCS’s of arbitrary finite size exist.

Problem. Do Reichenbachian common cause systems of countably infinite size
exist?
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The answer to the above question is not known; we conjecture that RCCS’s
of infinite size also exist.

A given correlation Corr (A, B) in probability space (S, p) can possess two
or more Reichenbachian common causes. Similarly, a correlation can have more
than two proper Reichenbachian common cause systems (this being a conse-
quence of Proposition 3); however, the different RCCS’s cannot be arbitrarily
located in the event structure S. To formulate the proposition constraining the
location of RCCS’s in S, consider the set P of all partitions of S. Let P1 =
{C1

i }i∈I and P2 = {C2
j } j∈J be two partitions in P. The partition P1 is defined

to be finer than P2 (equivalently: P2 is defined to be coarser than P1) (nota-
tion P1 � P2) if for every C2

i ∈ P2 there exist C1
j i
l
∈ P1 ( j i

l ∈ L ⊆ J ) such that
C2

i = ∪ j i
l ∈LC1

j i
l
. P1 is called strictly finer (coarser) than P2 if P1 is finer (coarser)

than P2 and P1 �= P2. The relation � is a partial ordering on P, and the terminology
“(strictly) finer” and “(strictly) coarser”) applies to RCCS’s as well since RCCS’s
are partitions.

Proposition 4. If {Ci }i=n
i=1 is a Reichenbachian common cause system in (S, p) for

the pair A, B, then there exists in (S, p) neither strictly finer nor strictly coarser
Reichenbachian common cause system for A, B.

Proof: Assume that {C2
j } j=m

j=1 is a RCCS strictly coarser than the RCCS {C1
i }i=n

i=1

(n > m). There exist then a C2
j such that for some C1

i j
l

∈ P1 with i j
l ∈ L and L hav-

ing the cardinality of at least 2, we have C2
j = ∪i j

l ∈LC1
i j
l

. Consider the probability

measure space (SC2
j
, p(•|C2

j )) where

SC2
j
= {

X ∩ C2
j | X ∈ S

}
(12)

and where p(•|C2
j ) is the conditional probability measure of p with respect to the

conditioning event C2
j . By the definition of {C2

j } j=m
j=1 as a Reichenbachian common

cause system, the events A and B are statistically independent with respect to the
probability measure p(•|C2

j ), i.e.

p
(

A ∩ B|C2
j

) = p
(

A|C2
j

)
p
(
B|C2

j

)
(13)

On the other hand, the events C1
i j
l

(i j
l ∈ L) form Reichenbachian common cause

system in (SC2
j
, p(•|C2

j )) with respect to the events (A ∩ C2
j ) and (B ∩ C2

j ); hence,

by Proposition 2 there is a positive correlation between (A ∩ C2
j ) and (B ∩ C2

j ) in
the measure p(•|C2

j ) i.e. we have

p
((

A ∩ C2
j

) ∩ (
B ∩ C2

j

)|C2
j

)
> p

(
A ∩ C2

j |C2
j

)
p
(
B ∩ C2

j |C2
j

)
(14)
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which contradicts (13). So the assumption of existence of two, different RCCS’s
that are in the finer–coarser relation has led to contradiction, so the proposition is
proved. �

4. CONCLUDING REMARKS

We can express the content of Proposition 4 in the following way: any totally
ordered subset of partitions in (S, p) contains only one Reichenbachian common
cause system for a given fixed pair of events A, B ∈ S. So while there may exist
many RCCS’s for a given correlated pair, the different RCCS’s provide different
sorts of explanations of the correlation between A and B. In particular, different
Reichenbachian common cause systems cannot be “put together” to form a “finer”
RCCS that would provide a more “detailed” explanation of the correlation. This
also implies that the partition of (S, p) generated in the natural manner by dif-
ferent Reichenbachian common causes Ci ∈ S does not yield a RCCS; hence the
nonuniqueness of Reichenbachian common causes cannot be explained by say-
ing that the different common causes are just coarse-grained manifestations of a
deeper, finer underlying Reichenbachian common cause system.

Given two correlations Corr(Ai , Bi ) > 0 (i = 1, 2) in (S, p), the event C ∈ S
is called a common common cause of the two correlations if it is a common cause
of both Corr(A1, B1) > 0 and Corr(A2, B2) > 0. It is known that common causes
are not in general common common causes, i.e. that there exist two correlations
in a probability space that cannot have a common common cause (see Danks and
Glymour, 2001, and Hofer-Szabó et al., 2002 for results concerning necessary and
sufficient conditions implying the existsence of common common causes). The
notion of a Reichenbachian common common cause system also is a meaningful
concept and it would be interesting to find necessary and sufficient conditions for
a set of correlations to have a Reichenbachian common common cause system.

Motivated by considerations somewhat different from the one in this paper,
the problem of a common cause system is raised also in Placek (2000), where
a common cause system (called “multiple common cause”) is defined to be a
finite partition possessing the screening off property (Eq. (9)) only (plus some
mathematically not explicit requirement concerning the spatiotemporal location of
the events Ci (i = 1, 2, . . . n) and A, B, see Definition 3.3 in Placek (2000)). Thus
the notion of RCCS defined in the present paper is different from the one proposed
in Placek (2000). We wish to point out in this regard that without some requirement
in addition to (9) — such as (10) —, the notion of common cause system becomes
trivial: for instance, the set of atoms in any finite Boolean algebra form a partition
for which the screening off condition (9) holds; hence all probability measure
spaces with a finite Boolean algebra possess a common common cause system,
which seems counterintuitive. A Reichenbachian common cause system as defined
in the present paper is a much stronger notion.
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Reichenbach’s notion of common cause can naturally be adapted to quantum
probability spaces (L, p), where L is a nondistributive, orthomodular lattice and
where p is an additive (generalized) bounded measure on L (see Hofer-Szabó
et al., 1999, 2000b; Rédei, 1997, 1998, 2002; for some other attempts see Hofer-
Szabó, 1997, 1998). The notion of Reichenbachian common cause system also
can easily be generalized to the noncommutative case along the ideas followed in
this paper. Problems and questions concerning noncommutative Reichenbachian
common cause systems paralleling the ones treated here also can be formulated,
no results are known, however, on the noncommutative case.
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